This image illustrates the new "colorimetric technique" developed by researchers at Florida Atlantic University to map four dimensions (4D) of brain data using EEG signals at once. Using this fourth dimension will dramatically change the way neuroscientists are able to understand how the brain operates, shedding insight on a number of psychiatric and neurological disorders and opening up new ways to study therapeutic interventions, in particular the effects of drugs.
Groundbreaking Technique Reveals Modus Operandi of the Intact Living Brain
Dynamical Theory and Novel 4D Colorimetric Method Reveal the Essential Modus Operandi of the Intact Living Brain--Study shows how areas in the brain integrate and segregate at the same time.
For the brain to achieve its intricate functions such as perception, action, attention and decision making, neural regions have to work together yet still retain their specialized roles. Excess or lack of timely coordination between brain areas lies at the core of a number of psychiatric and neurological disorders such as epilepsy, schizophrenia, autism, Parkinson’s disease, sleep disorders and depression. How the brain is coordinated is a complex and difficult problem in need of new theoretical insights as well as new methods of investigation. In groundbreaking research published in the January 2009 issue and featured on the cover of Progress in Neurobiology, researchers at Florida Atlantic University’s Center for Complex Systems and Brain Sciences in the Charles E. Schmidt College of Science propose a theoretical model of the brain’s coordination dynamics and apply a novel 4D colorimetric method to human neurophysiological data collected in the laboratory. The article, titled “Brain coordination dynamics: true and false faces of phase synchrony and metastability,” is co-authored by Drs. Emmanuelle Tognoli, an expert in neurophysiology and research assistant professor in the Center’s Human Brain and Behavior Laboratory, and J. A. Scott Kelso, the Glenwood and Martha Creech Eminent Scholar in Science and founder of the Center. The authors’ theory and data show that both tendencies co-occur in the brain and are essential for its normal function. Their research demonstrates that coordination involves a subtle kind of ballet in the brain, and like dancers, cortical areas are capable of coming together as an ensemble (integration) while still exhibiting a tendency to do their own thing (segregation).
“A lot of emphasis in neuroscience these days is on what the parts do,” said Kelso. “But understanding the coordination of multiple parts in a complex system such as the brain is a fundamental challenge. Using our approach, key predictions of cortical coordination dynamics can now be tested, thereby revealing the essential modus operandi of the intact living brain.”
Tognoli and Kelso developed a novel colorimetric technique that simultaneously maps four dimensions of brain data (magnitude, 2D of cortical surface and time) in order to capture true synchronization in electroencephalographic (EEG) signals. Because of the fourth dimension afforded by this colorimetric method, it is possible to observe and interpret oscillatory activity of the entire brain as it evolves in time, millisecond by millisecond. Moreover, the authors’ method applies to continuous non-averaged EEG data thereby de-emphasizing the notion of “an average brain.” The authors demonstrate that only in continuous EEG can real synchronization be sorted from false synchronization – a kind of synchronization that arises from the spread of electrical fields and volume conduction rather than from genuine interactions between brain areas.
Most of the time, activity from multiple brain areas look coordinated; however, in actuality, there is far less synchrony than what appears to be. With the support of mathematical models that reproduce the biases of real brain records in synthetic data, the authors show how to tell apart real and false episodes of synchronization. For the first time, true episodes of brain coordination can be spotted directly in EEG records and carefully analyzed.
In addition to shedding insight on the way the brain normally operates, Tognoli and Kelso’s research provides a much-needed framework to understand the coordination dynamics of brain areas in a variety of pathological conditions. Their approach allows a precise parsing of “brain states” and is likely to open up new ways to study therapeutic interventions, in particular the effects of drugs (pharmaco-dynamics). Their approach will also help improve the design of brain computer interfaces used to help people who are paralyzed.
“In the future, it may be possible to fluently read the processes of the brain from the EEG like one reads notes from a musical score,” said Tognoli. “Our technique is already providing a unique view on brain dynamics. It shows how activity grows and dies in individual brain areas and how multiple areas engage in and disengage from working together as a coordinated team.”
In addition to simple linear synchronization between brain areas, the authors describe more subtle modes of coordination during which areas may cooperate (integrate) and at the same time retain their functional specificity (segregation).
“This property of metastability falls out of our theory and is crucial for the brain,” said Kelso. “The brain is a complex nonlinear dynamical system, and it needs to coordinate the activity of diverse and remotely connected parts in order to extract and communicate meaningful information.”
Tognoli points out that subtle regimes of coordination are advantageous for the brain and are faster, more powerful and less energetically costly, thereby creating rich modes of interaction that surpass those of simple linear modes of coordination.
For a long time, scientists have strictly emphasized one kind of synchronization called ‘inphase’ or ‘zero-lag synchrony’ looking only at who is coordinated with whom and not observing the details of how they are coordinated. Through their research, Tognoli and Kelso have shown that the brain uses a much wider repertoire of synchronization patterns than just inphase. For example, brain areas may lock their oscillations together but keep a different phase.
This characteristic is also a key to the brain’s dynamic complexity. Areas may encode distinct information when they coordinate with one phase difference or another, and the brain may finely tune itself, such as in learning, by altering the lag at which its areas coordinate rather than just switching synchrony on and off. Such a brain would have a far greater combinatorial and computational power than the old model of the ‘inphase brain’. But to understand the principals at work, the lag or ‘relative phase’ between coupled oscillations in the brain needs to be systematically studied.
“This work lies at the intersection of neuroscience and complexity science,” said Dr. Gary Perry, dean of the Charles E. Schmidt College of Science. “Drs. Kelso and Tognoli have successfully developed the specific conceptual and methodological tools needed to capture and observe these important features in empirical data. Their unique approach and findings will help to shed light on some of world’s most debilitating and costly health disorders.”
The authors’ research is supported by the National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Science Foundation, U.S. Office of Naval Research and the Davimos Family Endowment for Excellence in Science.
- FAU -
Florida Atlantic University opened its doors in 1964 as the fifth public university in Florida. Today, the University serves more than 26,000 undergraduate and graduate students on seven campuses strategically located along 150 miles of Florida's southeastern coastline. Building on its rich tradition as a teaching university, with a world-class faculty, FAU hosts ten colleges: College of Architecture, Urban & Public Affairs, Dorothy F. Schmidt College of Arts & Letters, the Charles E. Schmidt College of Biomedical Science, the Barry Kaye College of Business, the College of Education, the College of Engineering & Computer Science, the Harriet L. Wilkes Honors College, the Graduate College, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science.
Wednesday, January 21, 2009
Frogs Are Being Eaten to Extinction
The global trade in frog legs for human consumption is threatening their extinction, according to a new study by an international team including University of Adelaide researchers.
The researchers say the global pattern of harvesting and decline of wild populations of frogs appears to be following the same path set by overexploitation of the seas and subsequent “chain reaction” of fisheries collapses around the world.
The researchers have called for mandatory certification of frog harvests to improve monitoring and help the development of sustainable harvest strategies.
University of Adelaide ecologist Associate Professor Corey Bradshaw says frogs legs are not just a French delicacy.
“Frogs legs are on the menu at school cafeterias in Europe, market stalls and dinner tables across Asia to high end restaurants throughout the world,” says Associate Professor Bradshaw, from the University’s School of Earth and Environmental Sciences and also employed as a Senior Scientist by the South Australian Research and Development Institute (SARDI).
“Amphibians are already the most threatened animal group yet assessed because of disease, habitat loss and climate change - man’s massive appetite for their legs is not helping.”
The annual global trade in frogs for human consumption has increased over the past 20 years with at least 200 million and maybe over 1 billion frogs consumed every year. Only a fraction of the total trade is assessed in world trade figures.
Indonesia is the largest exporter of frogs by far and its domestic market is 2-7 times that.
“The frogs’ legs global market has shifted from seasonal harvest for local consumption to year-round international trade,” says Associate Professor Bradshaw. “But harvesting seems to be following the same pattern for frogs as with marine fisheries - initial local collapses in Europe and North America followed by population declines in India and Bangladesh and now potentially in Indonesia.
“Absence of essential data to monitor and manage the wild harvest is a large concern.”
The study team also includes researchers from the Memorial University of Newfoundland in Canada, the National University of Singapore and Harvard University. A paper about the study is soon to be published online in the journal Conservation Biology.
The global trade in frog legs for human consumption is threatening their extinction, according to a new study by an international team including University of Adelaide researchers.
The researchers say the global pattern of harvesting and decline of wild populations of frogs appears to be following the same path set by overexploitation of the seas and subsequent “chain reaction” of fisheries collapses around the world.
The researchers have called for mandatory certification of frog harvests to improve monitoring and help the development of sustainable harvest strategies.
University of Adelaide ecologist Associate Professor Corey Bradshaw says frogs legs are not just a French delicacy.
“Frogs legs are on the menu at school cafeterias in Europe, market stalls and dinner tables across Asia to high end restaurants throughout the world,” says Associate Professor Bradshaw, from the University’s School of Earth and Environmental Sciences and also employed as a Senior Scientist by the South Australian Research and Development Institute (SARDI).
“Amphibians are already the most threatened animal group yet assessed because of disease, habitat loss and climate change - man’s massive appetite for their legs is not helping.”
The annual global trade in frogs for human consumption has increased over the past 20 years with at least 200 million and maybe over 1 billion frogs consumed every year. Only a fraction of the total trade is assessed in world trade figures.
Indonesia is the largest exporter of frogs by far and its domestic market is 2-7 times that.
“The frogs’ legs global market has shifted from seasonal harvest for local consumption to year-round international trade,” says Associate Professor Bradshaw. “But harvesting seems to be following the same pattern for frogs as with marine fisheries - initial local collapses in Europe and North America followed by population declines in India and Bangladesh and now potentially in Indonesia.
“Absence of essential data to monitor and manage the wild harvest is a large concern.”
The study team also includes researchers from the Memorial University of Newfoundland in Canada, the National University of Singapore and Harvard University. A paper about the study is soon to be published online in the journal Conservation Biology.
Labels:
COREY BRADSHAW,
ECOLOGY,
FROGS LEGS
Subscribe to:
Posts (Atom)