Saturday, April 25, 2009

Vitamin D 'is a hormone'


A new study has suggested that vitamin D isn't really a vitamin at all -- it's actually a hormone made inside the body without any help from the sun.
An international team has carried out the study and concluded that the increase of vitamin D in our modern diets is based on a common belief which is actually a misconception with potential consequences.
ÒWhat we have confirmed with our recent research is that vitamin D is a hormone that is made by the body itself. Our bodies hormonal control system was being overwhelmed by the amount of external vitamin D,Ó lead researcher Prof Trevor G Marshall at Murdoch University in Australia said.
The researchers go on to explode another long held belief about this secosteriod previously known as vitamin D. ÒYou don't have to ingest any vitamin D in order to be perfectly healthy,Ó Prof Marshall said.
So no more need for expensive supplements, no more basking in the sun to put us in a better mood? And what about the thinking that suggests vitamin D is vital in production of serotonin, an essential element linked to helping maintaining normal brain chemical function? ÓWhat we've shown is that all forms of vitamin D from outside the body are counterproductive to body's own ability to regulate its own internal production,Ó he said.

This conclusion doesn't mean a dramatic change of lifestyle where we must all suddenly shun the sun but the researchers do acknowledge that people have only been at risk of vitamin D overexposure from about the same time as when bikinis made an appearance.
ÒHistorically the amount of sunshine which people have typically been getting was adequate, certainly up until the mid twentieth century when we started to do silly things like sunbathing and wearing bikinis, and before that time people were already sourcing enough vitamin D from everyday foods like fish, mushrooms and eggs,Ó Prof Marshall said.
The World’s First, High Performance & Environmentally Benign Power Generation Unit


If the device is applied to 30% of the cars in Japan, we can expect a 960,000kl oil substitution effect which is 1.5 times the assumed effect from solar energy generation of the year 2010.


A research team led by associate professor Tsutomu Iida (Tokyo University of Science - Faculty of Industrial Science and Technology – Materials Science and Technology) has developed a power generation unit driven by wasted heat composed of Magnesium silicide (Mg2Si), a filtered by-product of Si-LSI and solar cell cast wafer production.

This device, being the first in the world, has been successful in bulk-quantity synthesis, at the same time increasing the thermoelectric conversion rate. Approximately 2,500W/m² (per unit) of power generation and 3,000 hrs of continuous operation has been made possible, sufficiently fulfilling the criteria for commercial use.

By applying this device in industrial shaft furnaces and/or car engines, we can expect drastic reduction in fuel consumption and prevention of global warming. Implementation of this device has already been determined partially as an experiment for practical use and there are high expectations of application of this device in industrial furnaces nation-wide.

Mg2Si Power Generation Unit Driven by Waste Heat - Capability & Effect; This device has an effective temperature range from 200 degree to 600 degree; hence, there is high hope for implementation in industrial furnaces, cars, etc. When applied to gas-powered vehicles, 500~1,000W of electrical energy can be recycled, increasing the energy use efficiency.

If the device is applied to 30% of the cars in Japan, we can expect a 960,000kl oil substitution effect which is 1.5 times the assumed effect from solar energy generation of the year 2010. Also, if the device is implemented in industrial shaft furnaces which have an approximately 10% energy use efficiency, the efficiency will increase by 1.5 times and CO2 emission will be reduced by one-third. Iida’s research team is continuing research for further improvement in energy conversion and durability of the device.

Background of R&D and Success of Material Development;

Today, our main source of energy is fossil fuel. However the energy use efficiency has only gone up to 30% leaving 70% to be disposed as “wasted heat”. Efficiently reusing “wasted heat” and reducing fossil fuel consumption and CO2 emission, from the perspective of preventing global warming, has attracted attention from all around the world. The popularization of power generation from wasted heat has gone through many obstacles such as scarcity of material, cost, toxicity, etc. Iida’s research team has focused on the low cost and environmentally friendly silicon.

They have successfully managed to mass produce Magnesium silicide (Mg2Si), from the by-product of Si-LSI and solar cell cast wafer production, providing high-performance in power generation driven by wasted heat.

- Progress of Research -
Discovery of Magnesium silicide, material for Thermoelectric Conversion driven by Wasted Heat

Heretofore the compound of Lead and Tellurium (Pb-Te), have been known to be the material for thermoelectric conversion from wasted heat. However, Lead being hazardous and Tellurium being scarce, development of new material of low environmental burden was hoped for. Iida’s research team has been successful in being pioneers of mass producing Magnesium silicide from Silicon which is found abundantly on earth, holding the characteristic of being nonhazardous. Through this discovery of environmentally benign material, the realization of an environmentally benign technology of thermoelectric conversion through wasted heat was made possible.

Development of Magnesium silicide from Silicon by-product Silicon, being the main raw material for Magnesium silicide, is widely known to be a necessary ingredient for semiconductors throughout the electronic industry. However, in production of ultrapure silicon, much energy is consumed and more than half of the material comes out as Silicon sludge, usually being disposed of. This not only pollutes the environment, but raises the cost of production and also prevents further development of new materials and/or technology.

The research team has been successful in mass producing material for thermoelectric conversion through this waste product at a substantially low cost. Through this, thermoelectric conversion from wasted heat has become even more environmentally benign.

Profile - Tsutomu Iida
Background:
March, 1995: Meiji University Graduate School – completed PhD course
April, 1995: Japan Society for the Promotion of Science – Fellowship
July, 1995: Federal Republic of Germany – Volkswagen Foundation
April, 1997: Tokyo University of Science - Faculty of Industrial
Science and Technology – Materials Science and Technology
To Present
Major Field: Semiconductor Material Engineering
Field of Research: Semiconductor Energy Material (Thermoelectric Material / Solar Cell Material) ‘Environmentally Friendly’ Semiconductor Material

Research Content: Due to mass consumption of fossil fuel and also
for prevention of global warming, research and development of energy conversion materials are being conducted. Solar energy being the main source of reusable energy, development of solar cell material and thermoelectric conversion material is being conducted. Due to the fact that many elemental devices which are used for energy conversion tending to be toxic, development of environmentally benign semiconductor energy material continues to be conducted. Environmentally benign semiconductors are composed of semiconductor material which abundantly exists on earth and is highly ‘earth-friendly’.

Research Content:
1. Development of Thermoelectric Conversion Elemental Device through Magnesium silicide
2. Development of High Efficiency Solar Cells through Silicon Germanium
3. Photodecomposition and Hydrogen Composition of water through Semiconductor Photocatalyst

Website:http://web.mac.com/iida_lab/

Contact for this information -
Tokyo University of Science Technology Licensing Organization
Administrator: Niki
TEL: 03-5225-1089
e-mail:niki_tamotsu@admin.tus.ac.jp
Indus Script Encodes Language, Reveals New Study of Ancient Symbols

The Rosetta Stone allowed 19th century scholars to translate symbols left by an ancient civilization and thus decipher the meaning of Egyptian hieroglyphics.

But the symbols found on many other ancient artifacts remain a mystery, including those of a people that inhabited the Indus valley on the present-day border between Pakistan and India. Some experts question whether the symbols represent a language at all, or are merely pictograms that bear no relation to the language spoken by their creators.

A University of Washington computer scientist has led a statistical study of the Indus script, comparing the pattern of symbols to various linguistic scripts and nonlinguistic systems, including DNA and a computer programming language. The results, published online Thursday by the journal Science, found the Indus script's pattern is closer to that of spoken words, supporting the hypothesis that it codes for an as-yet-unknown language.

"We applied techniques of computer science, specifically machine learning, to an ancient problem," said Rajesh Rao, a UW associate professor of computer science and engineering and lead author of the study. "At this point we can say that the Indus script seems to have statistical regularities that are in line with natural languages."

Co-authors are Nisha Yadav and Mayank Vahia at the Tata Institute of Fundamental Research in Mumbai, India; Hrishikesh Joglekar, a software engineer from Mumbai; R. Adhikari at the Institute of Mathematical Sciences in Chennai, India; and Iravatham Mahadevan at the Indus Research Center in Chennai. The research was supported by the Packard Foundation and the Sir Jamsetji Tata Trust.

The Indus people were contemporaries of the Egyptian and Mesopotamian civilizations, inhabiting the Indus river valley in present-day eastern Pakistan and northwestern India from about 2600 to 1900 B.C. This was an advanced, urbanized civilization that left written symbols on tiny stamp seals, amulets, ceramic objects and small tablets.

"The Indus script has been known for almost 130 years," said Rao, an Indian native with a longtime personal interest in the subject. "Despite more than 100 attempts, it has not yet been deciphered. The underlying assumption has always been that the script encodes language."

In 2004 a provocative paper titled The Collapse of the Indus-Script Thesis claimed that the short inscriptions have no linguistic content and are merely brief pictograms depicting religious or political symbols. That paper's lead author offered a $10,000 reward to anybody who could produce an Indus artifact with more than 50 symbols.

Taking a scientific approach, the U.S.-Indian team of computer scientists and mathematicians looked at the statistical patterns in sequences of Indus symbols. They calculated the amount of randomness allowed in choosing the next symbol in a sequence. Some nonlinguistic systems display a random pattern, while others, such as pictures that represent deities, follow a strict order that reflects some underlying hierarchy. Spoken languages tend to fall between the two extremes, incorporating some order as well as some flexibility.

The new study compared a well-known compilation of Indus texts with linguistic and nonlinguistic samples. The researchers performed calculations on present-day texts of English; texts of the Sumerian language spoken in Mesopotamia during the time of the Indus civilization; texts in Old Tamil, a Dravidian language originating in southern India that some scholars have hypothesized is related to the Indus script; and ancient Sanskrit, one of the earliest members of the Indo-European language family. In each case the authors calculated the conditional entropy, or randomness, of the symbols' order.

They then repeated the calculations for samples of symbols that are not spoken languages: one in which the placement of symbols was completely random; another in which the placement of symbols followed a strict hierarchy; DNA sequences from the human genome; bacterial protein sequences; and an artificially created linguistic system, the computer programming language Fortran.

Results showed that the Indus inscriptions fell in the middle of the spoken languages and differed from any of the nonlinguistic systems.

If the Indus symbols are a spoken language, then deciphering them would open a window onto a civilization that lived more than 4,000 years ago. The researchers hope to continue their international collaboration, using a mathematical approach to delve further into the Indus script.

"We would like to make as much headway as possible and ideally, yes, we'd like to crack the code," Rao said. "For now we want to analyze the structure and syntax of the script and infer its grammatical rules. Someday we could leverage this information to get to a decipherment, if, for example, an Indus equivalent of the Rosetta Stone is unearthed in the future."


More information about the Indus civilization and language is at http://www.harappa.com

Thursday, April 23, 2009

New Family of Proteins - TPC2

International research collaborators have identified a new family of proteins, TPC2 (two-pore channels), that facilitates calcium signaling from specialized subcellular organelles. It is the first to isolate TPC2 as a channel that binds to nucleotide nicotinic acid adenine dinucleotide phosphate (NAADP), a second-signaling messenger, resulting in the release of calcium from intracellular stores. According to the researchers, this new discovery may have broad implications in cell biology and human disease research.

“The discovery was the result of many researchers working as one international team toward a unified outcome. We are very appreciative of all the collaborators’ efforts,” said Jianjie Ma, PhD, professor of physiology and biophysics at UMDNJ-Robert Wood Johnson Medical School. “We are proud to be part of a study that will stand as the foundation for further exploration of human disease, helping researchers to better understand how calcium contributes to cell growth and disorders, including aging-related cardiac disease, diabetes, lysosomal cell dysfunction and the metastasis of cells in cancer.”

According to the researchers, the mechanism for how NAADP triggers the release of calcium, as well as the specific sites of calcium store targeted for release, were previously unknown. These findings indicate that NAADP, through its interaction with TPC2, targets a specific store of calcium in lysosomes, a specialized subunit within the cell that contain digestion enzymes and regulate cell function.

The study was a collaboration of investigative teams at four universities, including the laboratory of Dr. Michael Zhu at the Ohio State University, the laboratory of Dr. A. Mark Evans at the University of Edinburgh and the laboratory of Dr. Antony Galione at the University of Oxford.

The research was supported by grants from the United Kingdom’s Wellcome Trust and the British Heart Foundation, the United States’ National Institutes of Health, and the American Heart Association.

UMDNJ-ROBERT WOOD JOHNSON MEDICAL SCHOOL
As one of the nation’s leading comprehensive medical schools, Robert Wood Johnson Medical School of the University of Medicine and Dentistry of New Jersey is dedicated to the pursuit of excellence in education, research, health care delivery, and the promotion of community health. In cooperation with Robert Wood Johnson University Hospital, the medical school’s principal affiliate, they comprise New Jersey’s premier academic medical center. In addition, Robert Wood Johnson Medical School has 34 hospital affiliates and ambulatory care sites throughout the region.

As one of the eight schools of the University of Medicine and Dentistry of New Jersey with 2,800 full-time and volunteer faculty, Robert Wood Johnson Medical School encompasses 22 basic science and clinical departments and hosts centers and institutes including The Cancer Institute of New Jersey, the Child Health Institute of New Jersey, the Center for Advanced Biotechnology and Medicine, the Environmental and Occupational Health Sciences Institute, and the Stem Cell Institute of New Jersey. The medical school maintains educational programs at the undergraduate, graduate and postgraduate levels for more than 1,500 students on its campuses in New Brunswick, Piscataway, and Camden, and provides continuing education courses for health care professionals and community education programs.

Monday, April 20, 2009

How genes are controlled in mammals

The international FANTOM consortium announces publication of three milestone papers in the prestigious journal Nature Genetics that will challenge current notions of how genes are controlled in mammals.

FANTOM, or Functional Annotation of the Mammalian cDNA, which is organized by RIKEN Omics Science Center (OSC), has leading scientists in Australia, Switzerland, Norway, South Africa, Sweden, Canada, Denmark, Italy, Germany, Singapore, UK, and the United States. The consortium has been providing the scientific community with extensive databases on the mammalian genome that describe molecular function, biology, and cell components. FANTOM has become a world authority on the mammalian transcriptome, the set of all messenger RNA showing active genetic expression at one point in time. Other major discoveries are that approximately 70% of the genome is transcribed and that more than half of the expressed genes are likely non-coding RNAs (ncRNAs) that do not code proteins; thus, the prevailing theory that only 2% of the genome is transcribed into mRNA coding to proteins needed to be reexamined. Now in its fourth stage, FANTOM4, led by OSC’s Dr. Yoshihide Hayashizaki, has in over 3 years of laborious research developed a novel technology for producing a genome-wide promoter expression profile, established a mathematical scheme for describing the data obtained, and extracted key genomic elements that play dominant roles in the maintenance of cellular conditions.

In the current research, OSC has broadened its original technology CAGE (Cap Analysis of Gene Expression) and created deepCAGE, which takes advantage of next-generation sequencing to both precisely identify transcription start sites genome wide as well as to quantify the expression of each start site. The deepCAGE technology was applied to a differentiating acute myeloid leukemia cell line (ACL) to provide genome-wide time course dynamics of expression at the level of individual promoters — specific sequences on the DNA providing binding sites for RNA polymerase and the protein transcription factors that recruit them. The consortium built a quantitative model of the genome-wide gene expression dynamics that identified the key regulator motifs driving the differentiation, the time-dependent activities of the transcription regulators binding the motifs, and the genome-wide target promoters of each motif.

Validation of the model was performed by knocking down each transcription factor with small interfering RNAs. This first report of a large-scale gene network based on experimental data set is certain to generate much excitement in the scientific community. This information is also important for life science and medical researchers who are trying to uncover the processes by which cells undergo conversion or become cancerous, and for those attempting to determine how to control the growth and differentiation of stem cells and ensure their safety for use in regenerative medicine. Dr. Harukazu Suzuki, the scientific coordinator of the consortium, had this to say, “We are proud that we have created groundbreaking research in understanding more about how genes regulate cells at the molecular level and we want to acknowledge all consortium members for their great contribution to the research effort.”

The FANTOM consortium has also expanded earlier discoveries of transcriptional complexity by exploring repetitive elements found throughout mammalian genomes with DeepCAGE. These elements, which constitute up to half of the genome, have been generally considered to be junk or parasitic DNA. However, the team has found that the repetitive elements are broadly expressed and 6 to 30% of mouse and human mRNAs are derived from repetitive element promoters. These RNAs are often tissue-specific and dynamically controlled, and control the output of the genome through a variety of mechanisms. The FANTOM4 collaborators have also identified yet another type of short RNA, referred to as tiRNA (transcription initiation RNA) or tiny RNAs, in the human, chicken, and Drosphilia. They are about 18 nucleotides (nt) in length and are found within -60 to +120 nt of transcription start sites and may actually be widespread in metazoans (animals). A BioMed Central Thematic Series features even more FANTOM 4 research papers in Genome Biology and several BMC journals.

Contact:

RIKEN Omics Science Center
Director: Yoshihide Hayashizaki
Project director: Harukazu Suzuki

TEL: +81-45-503-2222 FAX: +81-45-503-9216

Wednesday, April 01, 2009

Distinguishing Single Cells With Nothing But Light

Researchers at the University of Rochester have developed a novel optical technique that permits rapid analysis of single human immune cells using only light.

Availability of such a technique means that immunologists and other cellular researchers may soon be able to observe the responses of individual cells to various stimuli, rather than relying on aggregate statistical data from large cell populations. Until now scientists have not had a non-invasive way to see how human cells, like T cells or cancer cells, activate individually and evolve over time.

As reported today in a special biomedical issue of Applied Optics, this is the first time clear differences between two types of immune cells have been seen using a microscopy system that gathers chemical and structural information by combining two previously distinct optical techniques, according to senior author Andrew Berger, associate professor of optics at the University of Rochester.

Berger and his graduate student Zachary Smith are the first to integrate Raman and angular-scattering microscopy into a single system, which they call IRAM.

“Conceptually it’s pretty straightforward—you shine a specified wavelength of light onto your sample and you get back a large number of peaks spread out like a rainbow,” says Berger. “The peaks tell you how the molecules you’re studying vibrate and together the vibrations give you the chemical information.”

According to Smith, “Raman spectroscopy is essentially an easy way to get a fingerprint from the molecule.”

Structural information is simultaneously gathered by examining the angles at which light incident on a sample is bumped off its original course.

Together the chemical and structural information provide the data needed to classify and distinguish between two different, single cells. Berger and Smith verified this by looking at single granulocytes—a type of white blood cell—and peripheral blood monocytes.

“One of the big plusses with our system is that it’s a non-labeling approach for studying living cells,” says Berger.

IRAM differs from most standard procedures where markers are inserted in, or attached to cells. If a marker sticks to one cell, and not the other, you can tell which cell is which on the basis of specific binding properties.

While markers are often adequate for studying cells at a single point in time, monitoring a cell over time as it changes is more problematic, since the marker can affect dynamic cell activities, like membrane transport. And internal markers actually involve punching holes in the membrane, damaging or killing the cell in the process.

“Our method uses only light to effectively reach inside the cell,” says Smith. “We can classify internal differences in the cell without opening it up, attaching anything to it, or preparing it in any special way. It’s really just flipping a switch.”

Despite being relatively intense, the light used with IRAM does not harm or inhibit normal cell functionality. This is because the wavelength of the light can be precisely calibrated to minimize absorption by the cells. The near-infrared spectrum has proven particularly optimal for allowing almost all of the light to pass through the cells.

With the availability of a technique where making a measurement does not alter cellular activity, scientists will be able to better observe individual cell responses to stimuli, which Berger and Smith suspect may have far reaching implications for current understandings of cell activation and development.

“In the cell sensing community it’s currently a pretty hot area to figure out how to analyze activation responses on a cell-by-cell basis,” says Berger. “If individual information was available on top of existing ensemble data, you’d have a richer understanding of immune responses.”

Perfecting IRAM has been a stepping stone process so far. Now that individual cells can be distinguished, Berger and Smith are actively investigating activation processes more explicitly. Preliminary IRAM experiments conducted on T cells have revealed perceivable differences between the initial resting state of a T cell and its state following an encounter with an invader.

The next step will be to use IRAM to gather data continuously so that scientists can effectively watch single cells undergo activation and react to stimuli in real-time. The ability to know not only about the aggregate responses of cells, but also be able to observe the earliest changes among individual cells, may be of profound importance in time-critical areas, such as cancer research and immunology.

“There’s an obvious desire among cell researchers to be able to deliver a controlled stimulant to a single cell and then study its response over time,” says Berger. “The clinical insights that might arise are currently in the realm of speculation. We won’t know until we can do it—and now we can.”